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10Abstract Classroom activity traditionally takes one of three forms, variously oriented toward
11the levels of individual students, small groups, or the whole class. CSCL systems, however,
12may enable novel ways to facilitate instruction within or sequence activity across these
13different levels. Drawing on theoretical accounts of learning at and across different scales of
14social interaction, this paper examines episodes of classroom activity featuring two learning
15environment designs that leverage networked digital devices to support face-to-face collabo-
16ration. Analysis of these episodes focused on two questions: When did activity shift between
17small and whole-group levels, and what mechanisms enabled or supported those shifts?
18Findings suggest that classroom activity in these environments was sometimes characterized
19by frequent, rapid shifts between levels, as well as instances that suggested hybrid forms of
20small-group and whole-class interaction. These shifts between and overlaps across levels were
21enabled and sustained through mechanisms including teacher orchestration, mediating roles
22played by virtual mathematical objects, learners’ appropriation of shared artifacts and re-
23sources, and emergent properties of these complex interactions among classroom participants.

24Keywords Mathematics . Classroomnetworks . Sociocultural theory . Classroomorchestration
25

26Introduction

27CSCL systems enable new modes of interaction among learners and novel ways to facilitate
28instructional activity (Koschmann, 1996). CSCL environments span a wide range of contexts,
29including face-to-face and virtual modalities, and formal and informal learning settings. This
30paper focuses on conventional classrooms, which have over the past two decades seen the
31emergence of an array of CSCL tools with the potential to reshape learning interactions in
32those settings (Brady, White, Davis & Hegedus, 2013; Chen, Looi & Tan, 2010; Higgins,
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33Mercier, Burd & Hatch, 2011; Roschelle & Pea, 2002; Roschelle et al., 2007; Schwarz, de
34Groot, Mavrikis & Dragon, 2015; Szewkis et al., 2011). Classroom instructional activity
35traditionally unfolds at one of three levels: individual students, small groups, or the whole
36class (Kaput, 2000; Stahl, 2012). CSCL systems have been harnessed to support each of these
37pedagogical modes, through a variety of tools for classroom networking—local or wide-area
38communication between students’ and teachers’ computing devices. Perhaps the most widely
39used form of classroom network technology—audience response systems, or “clickers”—
40centers on activity at the individual level, typically in the form of students’ multiple-choice or
41short-answer input to an instructor prompt (Hunsu, Adesope, & Bayly, 2016; Roschelle,
42Penuel & Abrahamson, 2004).
43However, the integration of classroom communication infrastructures with dynamic repre-
44sentation technologies that are increasingly central in mathematics teaching and learning also
45enable more interactive forms of activity at other levels (Hegedus & Moreno-Armella, 2009).
46Some learning activity designs have focused on the small-group level, exploring the potential
47for classroom networks to support cooperation and collaboration by distributing interdepen-
48dent mathematical objects, representations, or roles (White, 2006; Zurita & Nussbaum, 2004).
49Another line of innovation has emphasized dynamic objects jointly produced and collectively
50engaged by the whole class as resources for supporting discussion and participation (Hegedus
51& Kaput, 2004; Stroup, Ares & Hurford, 2005).
52In addition to supporting novel forms of small- and large-group learning activity, these
53integrated communication and representation infrastructures may also allow the boundaries
54between levels of instructional interaction to become more fluid. For example, Clark-Wilson
55(2010) has described the ways classroom network technology can enable novel forms of
56interplay between the individual student and whole-class levels of activity, such as when
57mathematics teachers used publicly displayed screen captures of all students’ devices to
58showcase contrasting student solution strategies, or even to increase the sample size of
59classroom datasets in discussions of statistics topics by aggregating results from multiple
60student screens. Indeed, any audience response system can provide a ready means of linking
61the individual and whole class levels when the instructor uses real-time polling results as the
62basis for a classroom discussion.
63This paper seeks to further explore this potential for integrating levels of instructional
64activity through a classroom network design that incorporates elements oriented toward
65individual students, small groups and the whole class. Any given daily session in a typical
66classroom might alternately feature activity at two or all three of these levels. These different
67segments of class activity might each stand more or less alone, or be intentionally grouped into
68successive steps of a coherent pedagogical scenario (Dillenbourg, 2015), such as individual
69practice followed by small group investigation and then whole-class reflection. In either case,
70instructional activity at these different levels is generally sequential rather than simultaneous—
71a few small groups engaged in collaborative inquiry while the teacher tries to lecture would
72likely be disruptive; a student completing a worksheet or solving a problem might have
73difficulty listening or contributing to a parallel class discussion. But the interweaving of
74face-to-face interactions with networked transactions such as the sharing of dynamic math
75representations may enable new scenarios for connecting levels of learning activity. Below, I
76begin by situating this inquiry among theoretical accounts of learning at and across different
77scales of social interaction. I then present two learning environment designs situated at the
78interstices between individual, small- and whole-group classroom activity, and report findings
79from a cycle of investigation in an ongoing design-based research project that explores ways
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80networked digital devices might support mathematically rich classroom activities and interac-
81tions among students.

82Theoretical perspectives on multilevel classroom activity

83Different levels of classroom activity have often been informed by and investigated through
84correspondingly different theoretical perspectives on learning, ranging from individual cogni-
85tion, to small group collaboration, to community participation (Stahl, 2012). To examine forms
86of classroom activity that may span these multiple levels, I consider theoretical frameworks
87and key constructs that offer more integrated accounts of action and interaction at individual,
88small- and large- group scales. In particular, sociocultural theory posits individual cognition
89and development as inherently social, grounded in interactions with others and shaped by the
90internalization of cultural tools (Vygotsky, 1978; Wertsch, 1985). On this account, individual
91and group processes are not distinct, but rather combine to form a single coherent unit of
92cultural-historical activity (Cole, 1996 Q1).
93Nonetheless, there is analytic utility in alternating focus between different planes of activity;
94Rogoff (1995), for example, differentiates three critical planes of sociocultural activity:
95personal, interpersonal and community. Rogoff stresses that the planes are interdependent,
96but also argues that foregrounding each plane in turn lends salience to distinct aspects and
97mechanisms of learning and development. Similarly, Ludvigsen and Arnseth (2017) charac-
98terize sociocultural analyses of learning and development in terms of three nested and
99interdependent layers: individual, social interaction, and cultural practice. While acknowledg-
100ing the primacy of the interactional layer in CSCL analyses, Ludvigsen and Arnseth’s account
101stresses the importance of simultaneously attending to the other layers, as tool-mediated
102collaboration among peers creates conditions for individual learning and participation, even
103as those interactions also shape and are shaped by historical and institutional conditions.
104Saxe (2002) has elaborated an analytic approach that draws on sociocultural theory in order
105to examine the development of mathematical practices within and across these three planes or
106layers in classroom settings. On Saxe’s account, individual learners take up forms, such as
107digital artifacts and mathematical objects, through goal-directed interactions with peers. Over
108time, through successive cycles of social interaction, those forms take on particular meanings to
109collective practices established by the classroom community. Thus collaborative activity among
110small groups of learners provides a site and a task structure for sociogenetic mechanisms
111through which mathematical artifacts become meaningful to collective classroom practice. In
112the context of a classroom-based CSCL environment, Furberg, Kluge and Ludvigsen (2013)
113have likewise drawn on sociocultural theory to show how representational artifacts such as
114science diagrams serve as resources for individual learners to coordinate their conceptual sense-
115making activities through interactions with peers, and in relation to institutional practices and
116norms. Below, I elaborate the roles of key constructs from sociocultural theory as they further
117illuminate aspects of these interactions between levels of classroom activity.

118Mediation and appropriation

119Two mechanisms from sociocultural theory are particularly relevant to conceptualizing inter-
120sections among different levels of activity in settings such as classrooms. One, the concept of
121mediation, offers utility for examining the role of artifacts such as classroom network
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122technology in classroom activity. Mediation generally refers to the ways physical or symbolic
123tools reshape relations between a human subject and the object of his or her activity. Mediation
124can describe activity on any plane; dynamic representation technologies, for example, might
125variously mediate individual students’ problem-solving or proving activities (Guin & Trouche,
1261998; Mariotti, 2000), peer interaction in collaborative learning tasks (Stahl, 2009), or teacher
127facilitation and student participation in whole-group classroom learning activities and mathe-
128matical discussions (Ares, Stroup & Schademan, 2009; Clark-Wilson, 2010). In each case,
129mediation is a two-way process; it has both an external orientation through which an artifact
130enables actions toward an object, and an internal orientation whereby the subject is trans-
131formed through participation in mediated activity.
132Focusing on this latter, inward orientation, the concept of appropriation has been widely
133applied to instances where individuals take up and make use of symbolic or material resources
134they encountered in social settings. In mathematics education contexts, researchers have used
135appropriation to describe how learners come to adopt ways of using cultural tools—including
136mathematics concepts andways of participating inmathematical forms of practice—by observing
137and interacting with teachers, tutors or peers in small-group and whole-class settings
138(Abrahamson, Trninic, Gutiérrez, Huth, & Lee, 2011; Carlsen, 2010; Lai & White, 2014;
139Moschkovich, 2004; Radford, 2000, 2013). Fundamentally, appropriation involves a transfor-
140mation of activity at the individual level through participation in collective activity (including, but
141not limited to, the levels of small groups and classroom communities) (Rogoff, 1990, 1995).
142Thus, the mechanisms of mediation and appropriation can be used in tandem to consider
143transitions between levels of mathematics classroom activity. When mediational means—
144mediating artifacts or forms of tool-mediated practice—are appropriated, they move between
145planes of activity. In a classroom environment replete with representation and communication
146technologies, and combining segments of instructional activity at different levels of interaction,
147individual students or small groups may regularly appropriate mediational means first dem-
148onstrated by others in the classroom community. As these transitions between planes occur,
149they also mark opportunities for transformation of those meditational means as they are taken
150up and potentially recast by actors at different levels.

151Emergence

152Another mechanism of interactions between levels or layers of sociocultural activity is
153emergence. The idea of emergence has been extensively developed in relation to the study
154of natural systems that are self-organizing, governed by rules or patterns of behavior at the
155level of individual elements or agents rather than imposed by any top-down structures or
156imperatives (Johnson, 2001). A key characteristic of these complex systems is emergence, a
157process by which properties at the global level arise from but do not duplicate and are not
158readily explained by events or interactions at the local level (Sawyer, 2005). Metaphorically
159extending this principle to classroom contexts, Cobb & Yackel (1996) draw on sociocultural
160theory to articulate an “emergent perspective” on mathematics classroom activity in which
161mathematical understandings or practices might emerge as properties of either individuals, or
162the classroom group as a whole, through ongoing interactions among members of the
163classroom community. In Saxe’s (2002) framework, the goals of individual learners in
164classroom mathematics practices emerge from interactions with other participants, artifacts,
165and activity structures. In classrooms where conditions of complexity are nurtured (Davis &
166Simmt, 2003), and in collaborative knowledge building contexts like wikis (Cress Q2, 2008),
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167learning can be characterized in terms of emergence—as a collective accomplishment of the
168group or community rather than a property of individuals.
169Some design experiments have taken the analogy between classrooms and complex
170systems a step further, explicitly designing learning activities that invite students to engage
171in “participatory simulations” wherein handheld or wearable technologies, or simple rules
172governing individual actors’ behaviors, allow a group of learners to collectively play out a
173scenario and then observe phenomena that emerge as a result (Colella, 2000; Klopfer, Yoon &
174Perry, 2005; Levy and Wilensky, 2008 Q3; Wilensky & Stroup, 1999a). These designs intention-
175ally leverage the complexity inherent in the interactions of a classroom group as a resource for
176illustrating and inviting students to engage and reflect on emergent phenomena as they arise
177from other complex systems modeled by participants’ interactions in the learning activity
178design. Prior work with participatory simulations in mathematics classrooms equipped with
179classroom network technology has emphasized the importance of reciprocities between
180mathematical and social structures in these settings. In this “generative design” approach
181(Stroup, Ares & Hurford, 2005), mathematical relationships are leveraged as resources for
182organizing social interactions in class-level activity, so that those emergent interactions might
183in turn enrich participants’ experience of and insight into mathematical structure.
184Participatory simulations showcase a pedagogical strategy for intentionally intermixing two
185levels of instructional activity, simultaneously foregrounding the individual and the whole
186class. Notably, however, in studying student learning about emergent phenomena in the
187context of participatory simulation activities,Levy andWilensky (2008) report on a widespread
188strategy adopted by learners for reasoning about complex systems, whereby they make use of
189“mid level” constructions—imagined subgroups of a small number of agents that help them to
190envision and describe phenomena emerging in a larger interacting group. This finding echoes
191an argument from the field of computer-supported collaborative learning that small groups of
192learners function as crucial intermediaries between individuals and larger communities (Stahl,
1932006). Moreover, it also suggests an interesting possibility for design: that the analogies
194between classroom interactions and complex systems, and between social and mathematical
195structures, each might be extended to learning environments that intentionally utilize small as
196well as whole-class groups of actors in modeling and enacting phenomena of interest.

197Teachers and classroom orchestration

198A final note in the application of sociocultural theory to the examination of multilevel
199mathematics classroom activity involves the role of the teacher. Saxe (2002) stresses that
200traditional and reform-oriented mathematics classrooms have different activity structures—
201different ways of framing possibilities for individual participation and goal-directed interaction
202in collective classroom practice. These structures entail correspondingly different roles for a
203teacher, as presenter of information or as facilitator of joint inquiry. In a compatible account,
204Enyedy (2005) details the critical role of the teacher in transforming individual students’
205personal acts of invention into shared conventions for the classroom community. So teachers
206play a pivotal part in providing both the structures and the mechanisms that enable connections
207across individual, social and collective layers of classroom activity.
208In CSCL contexts, several researchers have adopted the metaphor of orchestration as a
209means of conceptualizing the critical role of a teacher in both organizing instructional activity
210at individual, small and whole-group scales, and integrating technological resources and other
211material artifacts across those levels (Dillenbourg, 2012; Drijvers, Doorman, Boon, Reed, &
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212Gravemeijer, 2010; Roschelle, Dimitriadis & Hoppe, 2013). Though it does not originate from
213the sociocultural tradition, I likewise take up orchestration as a means of naming teachers’
214facilitation moves that bridge levels of classroom activity. Adopting the term provides a means
215of incorporating specific tools for the examination of classroom levels into a broader frame-
216work for the analysis of layered sociocultural activity.
217In particular, Dillenbourg (2015) elaborates an approach to modeling instructional sessions
218through orchestration graphs reflecting the ways a learning activity sequence is intentionally
219structured to vary between work at individual, team and whole class levels. Figure 1 illustrates
220a sample orchestration graph, in which the instructional sequence opens with an activity at the
221whole class level, followed by a pair of activities at the small group level, then a return to the
222class level, then a series of tasks at the individual, small group and whole class levels. Shifts
223between levels might be part of a planned sequence, or they might reflect in-the-moment
224instructional decisions (“I’m running out of time, so we’ll skip the next team activity”).
225Dillenbourg proposes that any pedagogical scenario, whether in a conventional classroom or
226a massive open online context, can be modeled in this way. Moreover, attending to orchestra-
227tion in this way can inform the design of tools to support learning activity within and
228transitions between levels (Dillenbourg, 2012).

229Summary

230Collectively, these theoretical and analytic resources point toward a framework for conceptu-
231alizing interplay between levels of activity in technology-mediated mathematics classrooms.
232Appropriation generally describes movement downward (from whole to small group or
233individual, from whole or small group to individual) between levels, and emergence describes
234movement upward between levels. And mediation emphasizes the roles played by artifacts,
235such as digital devices and dynamic representation tools, in those forms of activity that might
236emerge or be appropriated through interaction within and across levels, whereas orchestration
237emphasizes the role played by a teacher in facilitating instructional activity and interaction
238within and across levels. The next section introduces an approach to collaborative mathematics
239learning activity design that may lend salience to these transactions between levels.

240Collective mathematical objects and multi-level learning designs

241Prior investigations of classroom network technology have introduced learning activity de-
242signs in which a whole class group collectively constructs a set of mathematical objects—each
243student might use his or her device to contribute a distinct member of a family of functions, a

Fig. 1 Sample Orchestration Graph

T. White

JrnlID 11412_ArtID 9272_Proof# 1 - 16/03/2018



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

244locus of points, or a class of equivalent expressions to an aggregation on a shared display
245(Hegedus & Penuel, 2008; Stroup, Ares, Hurford & Lesh, 2007). In each case, the collective
246construct illustrates a map between the mathematical set and its elements that mirrors the
247relations between the classroom group and each individual student member. That individual-
248collective mapping then serves as a resource for directing student attention to the relations
249among these mathematical objects and guiding classroom discussions about patterns within
250and generalizations across the array (Stroup, Ares & Hurford, 2005).
251This dialectical interplay between mathematical and social structure can also be used to
252support mathematical conversations and interactions among pairs and small groups of stu-
253dents. While the number of students (often 30 or more) in a typical classroom group can
254effectively illustrate the variation within sets of mathematical objects that may be infinitely
255large, many core mathematical objects under study in the k-12 curriculum are composed of
256sets of just a few coordinated sub-objects: lines are uniquely determined by two points,
257quadratic expressions are comprised of three distinct monomial terms, equations compare
258two distinct algebraic expressions, functions are commonly represented through one of three
259modes—symbols, graphs or tables. Additionally, many of the conceptual challenges that face
260students as they grapple with these concepts consist of difficulties with the coordinated
261significance of these sub-objects: how to determine the slope of a line (Leinhardt,
262Zaslavsky, & Stein, 1990), to combine polynomial terms and simplify expressions
263(Linchevski & Herscovics, 1996), to solve equations (Kieran, 1992), to interpret relations
264among representations (Schoenfeld, Smith, & Arcavi, 1993).
265These small sets of mathematical objects can be aligned with correspondingly small groups of
266students through classroom network designs for collaborative learning tasks. In these designs,
267each learner manipulates a linked point to collectively form a curve in a Cartesian plane (White,
268Wallace & Lai, 2012), or transforms a respective side of an algebraic equation (Sutherland &
269White, 2016), or combines different-ordered terms or enacts different binomial operations among
270polynomial expressions (White, Sutherland & Lai, 2010), or examines a different representation
271of the same function (White & Pea, 2011). Broadly, problem-solving tasks are structured around
272these shared mathematical objects in order to make successful solutions dependent on contribu-
273tions from and coordination between all participants in a small group.
274This emphasis on designs for small groups reflects a hypothesis that networked personal devices
275might be powerful resources for supporting collaboration at the small group level. At the same
276time, however, the small groups in these classroom network designs are situated within a larger
277classroom group, and often feature public classroom displays that make the work of individual
278students and/or small groups visible to all students and the teacher. Consequently, classroom
279networking designs may hold potential for reorganizing or reshaping conventional classroom
280activity structures—for blurring the boundaries between forms of instruction oriented toward
281individual students, small groups, or the whole class. Below, I describe two such designs in detail,
282and present an analysis of the ways and the extent to which they might leverage intersecting
283mathematical and social structure to blend different levels of classroom activity.

284Learning environment designs for collaborative learning in classroom
285networks

286The data presented in this paper feature two different variations on this approach to classroom
287network learning activity design: Terms and Operations, focused on students’ collaborative
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288efforts to construct polynomial expressions, and Graphing in Groups, centered on pairs’ joint
289manipulation of linear functions. Both designs were created by my research group at UC Davis
290using the NetLogo modeling platform (Wilensky, 1999) and HubNet architecture (Wilensky &
291Stroup, 1999b) in concert with a classroom set of Texas Instruments graphing calculators
292connected through a TI-Navigator™ network. Students participated in learning activities by
293using a client application on their calculators, which they used to contribute and operate on
294mathematical objects collectively displayed through a server application running on the
295teacher’s computer and projected on a whiteboard or screen at the front of the room. Each
296design featured some mathematical objects belonging to individual student participants and
297others shared by both students in a pair, and interface elements variously associated with
298individual users, small groups, and the whole class. Both environments were designed to build
299opportunities for peer collaboration and classroom discussion around topics from a traditional
300introductory Algebra course. Below, I describe each of these designs in turn.

301The Terms and Operations activity

302Terms and Operations was designed tomake the traditional Algebra topic of simplifying algebraic
303expressions more interactive and engaging for learners. In this learning activity, student pairs share
304responsibility for constructing a polynomial expression. Each student uses the directional arrow
305keys on a calculator to move an icon in a whole-class shared display (left side of Fig. 2) populated
306with a variety of floating monomial terms (of order, sign, scale and number set by the teacher prior
307to each activity). The first time a student’s icon comes into contact with one of these terms, the
308student can “capture” the term to her group’s expressionwindow (shown in the right side of Fig. 2).
309Thereafter, each time one of the students in the pair encounters another floating term, she has the
310option to select a binary operation (add, subtract, multiply or divide) by which to combine the new
311term with the group’s current expression (Fig. 3a). That student is then prompted to enter a new

Fig. 2 Terms and Operations shared display
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312collective polynomial expression representing the result of the chosen operation on the captured
313term (Fig. 3b). If (and only if) the expression entered by the student is equivalent to the result of the
314operation, the system updates the collective expression.
315In Terms and Operations, there are screen elements (icons) and mathematical objects (captured
316terms and selected operations) associated with individual students, and some segments of activity
317center on those individuals’ interactions with keys, prompts, and symbol entry on the graphing
318calculator. Other aspects of the design, however, center on the student pair. The polynomial
319expressions cumulatively constructed over a series of these individual transactions are jointly owned
320by two students, and the system includes a restriction that the same student icon cannot perform
321consecutive captures. Moreover, tasks always involved combining several capture steps to construct
322an expression with particular characteristics (e.g., form a quadratic expression by capturing and
323operating on only linear and constant terms). These elements were intended to foster collaborative
324interactions by necessitating contributions from both partners and encouraging conversation about
325which terms and operations to choose and what new expression to enter. Finally, the public display
326of all icons, terms and group expressions dynamically updated throughout the activity, provided a
327resource for collective discussion and interaction at the level of the whole class.

328The Graphing in Groups environment

329Graphing in Groups was designed to reinforce students’ understanding of the relations
330between the equation and the graph of a linear function through exploration and peer
331cooperation. In Graphing in Groups, each student in a pair uses the four directional arrow
332keys on a graphing calculator to move a coordinate point one unit up, down, left or right in a
333Cartesian plane (Fig. 4a). Those movements of both students’ points on their respective
334devices respective are also mirrored in a shared graphing window in the public display.
335Students also have the option to “mark” a point at their current coordinate location; each time
336a student makes a new mark, the line between that point and the one most recently marked by
337the student’s partner is automatically updated in the group’s shared graphing window. The
338slope-intercept form equation of the line simultaneously appears just above or below the group
339graphing window (Fig. 4b). This linear function serves as a collective object which groups
340must jointly manipulate, through dialogue and coordinated action, in order to accomplish
341shared tasks. Likewise, the organization of two students in the small group reflects the
342relationship between that line and a set of points that graphically determine it, prompting
343students to reason about that relationship as they construct lines with particular characteristics
344(e.g., a slope of 2/3, or a negative y-intercept).

Fig. 3 a and b. Student calculator screens.
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345Up to two groups’ points, lines and equations, differentiated by color, can be displayed in
346the same group window; this configuration can enable four students to collaboratively
347construct or investigate relationships (e.g. parallelism, perpendicularity, a particular intersec-
348tion) between their lines. A grid composed of several groups’ graphing windows and projected
349from the teacher’s computer at the front of the classroom provides a collective display of all
350these small group-level graphs (Fig. 4c). An additional feature of the application allows the
351teacher to merge all groups’ points and lines into a larger single graphing window. Thus, as
352with Terms & Operations, Graphing in Groups features mathematical objects associated with
353both individuals (coordinate points) and small groups (linear functions). Likewise, the envi-
354ronment includes display elements oriented toward individuals (students’ calculator screens),
355small groups (the group graphing window and equation), and the whole class (the grid and
356merged graphing views).

357Method

358The Terms and Operations and Graphing in Groups designs were implemented in successive
359classroom-based design experiments, each with two groups of 16 9th grade Algebra I students
360(ages 14–15). The author served as the teacher for all class sessions. Six days of Graphing in
361Groups and four days of Terms and Operations activities with each of these groups were part
362of a year-long project in which students participated in classroom network activities for a one-
363hour session each week as a supplement to their regular mathematics program. Two to three
364student pairs in each class were selected as focus groups and videotaped during all activities.
365An additional camera with a wide zoom setting captured this projected display along with the
366whiteboard at the front of the room, as well as whole-class discussions and other teacher
367moves. All states of the classroom network computer server were also recorded as an
368additional video file and time-synched with camera-recorded sessions. Server logs recorded
369all terms and operations selected and expressions entered on student calculators.
370In order to develop an analysis of interactions across multiple levels of nested activity
371mediated by these classroom network tools, video files from each pair, the whole class, and the
372server computer were synchronized and watched by the author and two other researchers to
373build an annotated, minute-by-minute timeline of events and interactions at the small-group

Fig. 4 a, b and c. GraphingQ4 in Groups individual, small group and whole-class displays.
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374and whole-class levels for each session. For the purposes of the present study, the last day’s
375session from each of the Terms and Operations and Graphing in Groups units was purposively
376selected for more detailed analysis. These final sessions were not selected to be representative
377of “typical” instances within the data corpus, but rather as instances that came closest to
378illustrating the kinds of classroom interaction these environments were designed to enable—in
379general the students appeared to spend less time developing familiarity with the technology
380interface and more time engaging the mathematics over successive days in each unit. The
381timelines for these final sessions were subdivided into the four to six mathematical tasks (Stein,
382Grover & Henningsen, 1996) governing classroom activity on each day, and further reviewed
383in order to identify task segments in which classroom activity shifted between the small group
384and whole class levels. Episode selection was also informed by the author’s retrospective
385reflection, as researcher-teacher (Ball, 2000), on what happened in those particular class
386days—each stood out to me as memorable or interesting in the ways it represented what I
387perceived as instances of network-supported classroom activity worthy of closer examination.
388One episode spanning the duration of one mathematical task (several minutes, in each case)
389was selected from each day for finer-grained examination of the interactions between students,
390among small groups, between teacher and students, and across levels of activity.
391For each episode, each of the three small group videos and the video of the projected
392display were transcribed, and subtitles of all audible utterances were added to the video files.
393All four video files were precisely synchronized, and then imported into video analysis
394software that allowed them to be played simultaneously and layered with analytic codes.
395Drawing on techniques from interaction analysis (Jordan & Henderson, 1995) and related
396video-based education research methods (Derry et al., 2010), the episodes were repeatedly
397reviewed, often over very short intervals, to explore the following questions: When did
398classroom activity shift between levels? What mechanisms enabled or supported those shifts?
399To address the first question, I began by expanding the annotated timeline segments for
400each of these episodes into tables that show fully transcribed simultaneous dialogue and
401activity from the teacher and each student group on camera. As a transcription convention,
402these tables show boxed cells in a single column around segments of dialogue within a
403group, merged cells spanning two columns when groups on camera (or one group and the
404teacher) interacted with one another, and merged cells across all columns when the discus-
405sion spanned the whole class. Segments of dialogue and activity in horizontally aligned cells
406spanned the same interval of time, though utterances in different columns on the same
407horizontal row were not always simultaneous. To complement this detailed view, I also
408incorporated Dillenbourg’s (2015) orchestration graphs to summarize the transitions between
409levels of activity during these segments. While some segments of activity were clearly at the
410small group (students interacting with their assigned partners) or whole class (teacher
411facilitating dialogue with all students), others appeared to merge or feature simultaneous
412activity across levels (such as interactions between multiple groups); these instances are
413represented as overlapping levels of activity in the orchestration graphs and elaborated in the
414analysis.
415To address the second research question, I examined each of the transitions or overlaps
416between levels through the framework of appropriation, mediation, emergence and orchestra-
417tion outlined above. When one or more of these mechanisms contributed to a shift between
418levels of activity, or to interactions among participants or groups within that level, those
419contributions are noted with directional arrows and a notation (A, M, E, O) on the orchestra-
420tion graph, and further described in the written analysis.
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421Analysis

422This section presents detailed descriptions of the two selected episodes, each of which is
423further subdivided into two segments to illustrate successive analytic themes. The first segment
424of episode one provides some examples of transitions between levels of activity, as well an
425overview of how the different mechanisms of appropriation, mediation, emergence and
426orchestration each contributed to these shifts. A subsequent portion of this episode is then
427presented as an opportunity to more deeply explore intersecting mechanisms of emergence and
428appropriation. In the same fashion, Episode Two is likewise presented in two parts, the first
429particularly highlighting orchestration and mediation, and the second examining the ways
430several of these mechanisms interact to support shifts of not only social interaction, but also
431mathematical structure, across levels.

432Episode one: interactions across levels in Terms & Operations

433Below, I present a classroom episode from the implementation of one of these classroom
434network designs, selected from the fourth day in a series of lessons and activities featuring the
435Terms & Operations environment. After beginning the class with a brief review of the
436distributive property from the previous session, the teacher asked students to log in to Terms
437& Operations on their calculators, and then instructed each group to make a collective
438expression that featured parentheses. As groups began generating expressions that met this
439requirement, the teacher wrote each one on the board, and asked those groups to write their
440next expressions without parentheses.
441Table 1 presents a set of transcripts that span the simultaneous dialogue of three student
442groups, as well as comments made by the teacher, over a 90 s segment of this session. This
443segment joins the class 11 min into the activity, as groups were continuing to operate on new
444terms and write resulting expressions with and without parentheses, and just as Group 6 (not
445on video) became the first to create an expression with an x2 term. Taking note of this
446expression as it appeared in the public display (line 1), the teacher pointed it out to the whole
447class and noted the absence of x2’s among the floating terms (lines 7–8).
448This episode found all three of the student pairs on camera actively shifting between small-,
449inter- and whole group activity. When the teacher first directed attention to Group 6’s
450expression (line 1), Group 2 clearly followed along, and noted the novelty of the quadratic
451term (Jose, line 2) well before the teacher explicitly identified it, discussing at the level of their
452small group how they would have needed to pick up (and presumably multiply together) two
453different linear terms (lines 2–6). Meanwhile, the students in Group 8 turned around to identify
454and interact first with Group 7 and then Group 6, jokingly suggesting to the latter pair that the
455teacher’s singling them out might portend trouble (lines 2–6). While the respective dialogue of
456Groups 2 and 8 both centered on the activity of Group 6, one pair attended to the quadratic
457collective expression while the other focused on the students who had produced it. In the
458following moments, all four students in these two groups turned away from their inter- and
459intra-group dialogue to participate in a segment of whole-class conversation, taking turns
460actively responding to questions posed by the teacher (lines 7–9) (Fig. 5 Q6).
461Figure 6 captures the sequence of classroom activity from Table 1 in a modified orches-
462tration graph. Note that in line 1 the teacher addressed a single group during a period of small
463group activity, and Group 2 continued pair-level dialogue, so this interval is represented as
464featuring activity at on the Team plane. Yet each group’s dialogue clearly attended to the
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465teacher’s hailing of Group 6, including Group 8’s efforts to interact with other groups,
466suggesting some overlapping activity at the class level. Likewise, even as the activity moved
467to a whole-class level exchange facilitated by the teacher in lines 7–14, there was some
468overlapping interaction within and between groups. Beginning in line 15, all three groups
469on camera had resumed small group-level activity, even as the teacher reflected further on
470Group 6’s expression (extending the whole-class discussion topic) and then challenged other
471groups to make something similar (signaling the return to small group activity which had
472already commenced).

Fig. 5 Teacher with public display and three student groups during Terms & Operations activity

t1:1 Table 1.Q5

Intern. J. Comput.-Support. Collab. Learn

JrnlID 11412_ArtID 9272_Proof# 1 - 16/03/2018



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

473The teacher used several orchestration moves to shift repeatedly between interacting
474with small groups and with the whole class. In line 1, he spoke directly to Group 6, but
475clearly drew the attention of students in other groups to an emergent mathematical artifact.
476In line 7, he again began as if addressing Group 6 directly, but then shifted to calling the
477attention of “everybody” in the class to Group 6’s quadratic expression displayed on the
478projected screen. In line 8, he again began by speaking directly to Group 6 (“you guys
479have got an X2 term”), but immediately followed with a question to which at least three
480students from other groups volunteered responses (line 9). And in line 10, the teacher
481began by revoicing those responses from other groups (“No”), but then returned to
482addressing Group 6 directly, tasking them with rewriting their quadratic expression using
483parentheses (lines 10–16).
484In each case, these overlaps between interactions with a small group and with the whole
485class reflected not only orchestration moves by the teacher, but also the mediating role played
486by dynamic small group-level math objects in the public display. Each time he addressed
487Group 6, the teacher repeatedly tapped or pointed at their collective expression, usually
488accompanied by deictic references to that portion of the screen (“there,” line 1; “here,” line
4897; “this,” line 10), and alternated the direction of his gaze between the screen at the front of the
490room and their group at the back of the room. In these ways, he repeatedly reinforced the
491association between the two students in Group 6 and the polynomial expression they had
492jointly constructed, and called the attention of the class to the latter. And using this publicly
493displayed artifact to ask Group 6 about their work provided a ready means of inviting the rest
494of that class to reflect on the same questions.
495In the same moments, David (in Group 8) called across the room to Miguel (in Group 1),
496directing his attention to the screen in an apparent effort to ask (“What the…?) about his
497group’s current expression, 9X(25) (lines 11–14). Though David’s particular interest in the
498expression is unclear, the exchange illustrates how group-level mathematical objects in the
499public display mediated interactions between groups, as well as between group and teacher.
500Indeed, following David throughout this episode also highlights instances of appropriation,
501as the focus of his own attention appears to parallel the teacher’s efforts to track class activity
502displayed on the screen, and to interact accordingly with others in his own and other groups.
503After engaging with Groups 6 and 7 about the former’s expression highlighted by the teacher
504(lines 2–6), and then with Group 1 about their expression (lines 11–14), David then shifted
505attention to his own groupmate, but again focused on the public display, this time joining Anita

Fig. 6 Orchestration graph showing transitions and overlaps between activity on Team and Class planes in
Table 1. Arrows indicate when movement between levels (unidirectional vertical arrow) or interactions within
levels (bidirectional horizontal arrow) were supported by mechanisms of (A)ppropriation, (M)ediation,
(E)mergence or (O)rchestration
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506in an effort to locate her own icon in the floating terms field, and then discussing how to
507proceed after she picked up a new term (lines 15–19, 22–23).
508Meanwhile, perhaps chafing at the teacher’s attention to Group 6, Brian and Jose in Group 2
509asked what they should do next (lines 12, 14). A moment later, the teacher addressed an apparent
510response to the whole class, inviting other groups to duplicate Group 6’s feat of constructing a
511quadratic expression (line 20). By this time, all three groups on camera had resumed pair-level
512activity (lines 15–24). Nonetheless, Group 2 appeared to take up the latest direction from the
513teacher, quickly adjusting from “just moving around” (lines 16–17) to trying to find a “negative
514one X or something” (lines 22–23) in the floating terms field that they could multiply with their
515current linear expression. So, a novel construction by one group, highlighted by the teacher, had
516now emerged as a focal task for other groups. Meanwhile Group 8, struggling with how to
517simplify their expression, decided to “ask [the teacher] for help” (line 23). The next session
518analyzes the resulting interaction between these small groups and the teacher as they further
519illustrate both emergence and appropriation of tasks and solution strategies.

520Emergence and appropriation

521Prior to the excerpt above, Group 8 had constructed the expression −4(4× + 2). Anita picked
522up a 1 and chose to multiply it, but she and David both expressed uncertainty about how to
523proceed with rewriting the resulting expression, (−4(4× + 2))*1, without parentheses (lines 19–
52423). The teacher, still standing at the front of the room near Group 8’s table, overheard and
525followed up:

26. David: No, we already tried it like three times to get off the parentheses, but we can't.
27. Tobin: Oh, you can't make them go away. Ok.
28. David: No. Somehow, well, she just got a number.
29. Tobin: [approaching Group 8’s table] Let's see what you've got. [Looks at A's calculator] Ok,
30. so, here's a suggestion. What do you think that that [(-4(4x+2))*1] is equal to? [David
31. looks at Anita, neither answers] Well, this is really interesting actually, because you
32. picked up a one, right, and you multiplied times one? So, what happens when you
33. multiply, do you know what happens when you multiply something by one?
34. David: It stays the same.
35. Tobin: It stays the same. [Anita nods] So, your expression won't change, right?
36. David: Sure.
37. Tobin: What it's equal to won't change, but you can write it as something else that's
38. equivalent. So how could you rewrite that expression without parentheses?
39. Anita: Ohhhh, ok, I think I get it.  So you multiply…[points to expression on calculator]
40. David: It could be negative four multiplied by 4x+2, right?
41. Tobin: Sounds like it's worth trying. What do you think that would be? Talk about it. [Walks
42. away]

25. Tobin: Group 8, can you guys get an x2 into your expression?

526527

528When the teacher asked if they had an idea about how they would go about the new
529challenge of forming a quadratic expression, David explained that they were still struggling to
530complete the previous task of rewriting their expression without parentheses (lines 25–27). On
531arriving at their table, the teacher looked at Anita’s calculator and noted that she had just
532picked up a 1 and selected multiply, but not yet entered a new expression (line 29). The teacher
533suggested that it was “really interesting” that they had chosen to pick up and multiply by a one,
534and asked them about the effect of multiplying by 1 (lines 31–33). When David quickly replied
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535that the resulting expression “stays the same” and Anita indicated agreement (lines 34–36), the
536teacher encouraged them to use this circumstance as an opportunity to simplify their current
537expression without also having to incorporate a new term and operation (lines 37–38). Anita
538voiced understanding of this approach, and she and David simultaneously articulated their
539realization that they were faced only with the problem of simplifying “negative four multiplied
540by 4x + 2” (lines 39–40). As the teacher moved away, the students discussed how to multiply
541both 4x and 2 by −4, soon correctly entering -16×-8 and celebrating with a high-five as their
542collective expression updated to this new form.
543Thus while other groups were taking up the new task of constructing a squared term, the
544teacher and the students in Group 8 were using their coincidental choices—to pick up a 1 and
545multiply—to devise a strategy for rewriting expressions in simplified form within the con-
546straints of the Terms & Operations environment. This strategy was suggested by the teacher
547rather than discovered independently by the students, but that suggestion came only as a result
548of the teacher’s noticing an opportunity created through the apparent happenstance of Anita’s
549having selected an identity term and operation. In other words, the strategy was not a planned
550instructional outcome, but rather an emergent opportunity arising from a complex sequence of
551interactions among students, teacher, tools, and tasks—the students’ movements within a
552virtual field of randomly floating terms, their earlier efforts at symbol manipulation to produce
553the current expression, and their interactions with the teacher resulting from seeking help after
554a period of struggle.
555Thirteen minutes later in the session, the students continued to engage in the same activity,
556but several groups had successfully constructed quadratic expressions, and were subsequently
557prompted by the teacher to try factoring these expressions—to rewrite them, using parentheses,
558so that the x2 term was no longer visible. When the groups struggled with how to simulta-
559neously factor their current expression and pick up a new term, the teacher told the whole class
560about Group 8’s discovery that they could keep their expressions the same by choosing a 1 as
561their new term and multiplication as their operation.
562Once again, this segment blends small and whole-group dialogue and activity in quick
563succession (Fig. 7). The teacher began by announcing to the class that he wanted to share
564something David and Anita had done, and Anita responded to the attention by making a joking
565remark to David about her sole responsibility for their work (line 43). As the teacher went on
566to ask the class about the consequence of multiplying a quantity by one, Brian, David and Jose
567all voiced responses (lines 44–48, 51). This sequence follows a well-documented and wide-
568spread pattern of classroom discourse known as Initiation-Response-Evaluation (IRE) (Mehan,
5691979), in which a teacher poses a question or prompt (lines 44–45), students offer responses

Fig. 7 Orchestration graph showing transitions and overlaps between activity on Team and Class planes in
Table 2
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570(lines 46–48), and the teacher assesses the student contribution(s) (lines 49–50). However, the
571very same segment also found Brian making a quick self-repair—a similarly well-documented
572mechanism of small-group conversation (Schegloff et al., 1977)—as he initially replied that
573the quantity would change (line 46), then quickly adjusted his response (line 48) after hearing
574and then appropriating that of his groupmate (line 47). This brief exchange illustrates how
575mechanisms of whole-group discussion and dyadic interaction are hybridized in this segment
576of classroom network-supported discourse. This hybridity of levels was again in evidence
577moments later, when, just as the teacher went on to elaborate instructions for using an identity
578operation to rewrite an expression, Jose and Brian returned to pair-level dialogue and began
579carrying out those instructions in parallel with the teacher’s continuing elaboration of them.
580Jose’s direction to Brian to “get a one” was spoken simultaneously with the teacher’s
581recommendation to “go and find a one,” and coupled with a shift in gaze from the teacher
582and screen to his partner (line 53), as though he shifted mid-utterance from participating in
583whole- to small-group activity.
584The simultaneity of these student and teacher utterances in line 53 also indicates that Jose
585had already recognized and begun to implement the strategy the teacher would continue to
586elaborate moments later (lines 54–57). Though Jose had already taken up this approach, Brian
587remained confused about how they could factor their expression “on the calculator” (line
58858)—how they could factor an X out of their current quadratic expression (75X2 + 4X) while
589simultaneously adhering to the Terms & Operations requirement that they incorporate a new
590term. Jose reiterated that multiplying by one effectively eliminated this constraint, allowing
591them to draw on prior knowledge about factoring in more conventional Algebra classroom
592contexts (lines 59–61). In the final remaining minutes of the session, and with scaffolding from
593Jose, Brian was able to use this approach to rewrite their expression on his calculator in a
594factored form, X(75X + 4), and voice understanding of the approach (lines 62–63). Thus we
595see how a strategy that emerged from the activity of one group was introduced by the teacher
596as a resource at the whole class level, and then successfully incorporated into the work of
597another group. Moreover, that latter success relied on mechanisms of guided participation and
598participatory appropriation at two levels—the teacher’s uptake and elaboration of Group 8’s
599strategy in the context of a whole-group discussion, which enabled that strategy to be
600appropriated by Jose, who then in turn guided Brian through his own subsequent
601appropriation.

602Episode two: interactions across levels in Graphing in Groups

603In this section, I present an episode from the sixth day of activities with the Graphing in
604Groups environment. This class session began with a teacher-led review of the formula
605m = (y2 − y1)/(x2 − x1) for the slope of a line. Students had also participated in activities during
606prior sessions in which they examined the slope m for each new line they constructed. On this
607day, the teacher asked student pairs to construct a series of lines with particular characteristics,
608including one with a slope of three, and then another with a slope of negative one half. The
609following segment opens as the teacher has just assigned the next such task, namely to make a
610line with “the biggest slope that you can” (with the constraint that students’ points must remain
611within the 20 by 20 graphing window):
612In the period of classroom activity spanned by this table, lasting 36 s, interactions among
613participants occurred primarily at the level of the small group. After the teacher described the
614next task (line 1), the three pairs of students on camera initially interacted only within their
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615respective dyads (lines 2–15). Collectively, these three groups exhibited a range of different
616problem-solving strategies and peer interactions consistent with those observed during other
617classroom implementations of the Graphing in Groups environment (for a detailed analysis,
618see White, Wallace & Lai, 2012).

619Orchestration and mediation

620Beginning in line 16, the teacher made a series of orchestration moves that bridged this group-
621level activity with some whole-class level interactions (Fig. 8). When Group 3 constructed a
622line with a slope of 14 and it appeared in the public display, the teacher announced it to the
623class (lines 16–17). When the teacher went on to comment that this slope was “pretty big”,
624Jamal and Grace both responded directly (lines 18–20), opening a segment of dialogue with
625the teacher even as the other groups continued working on their own. When Jamal proposed
626that their slope was “the biggest, cause…” (line 21), he appeared to be preparing to explain his
627reasoning. However, the teacher responded before Jamal elaborated further, inviting all groups
628to try to establish a larger slope (lines 22–23), and then noting the line with slope 12
629established by Group 4 (line 24). The moment could be viewed as a missed pedagogical
630opportunity; encouraging Jamal to explain why 14 might be the largest possible slope may
631have allowed him to reflect on his own reasoning, or fostered a discussion with his partner and
632perhaps the rest of the class. But probing Jamal’s thinking would have required the teacher to
633either ignore or interrupt the concurrent work taking place in other groups, and in this moment
634he opted instead to sustain the current flow of activity.
635Perhaps as a result of this orchestration choice, the next sequence of events found the class
636in a rapid series of interactions between groups, and between the teacher and different groups.
637In order to illustrate this sequence of events, Table 4 presents the episode in finer grain than
638previous segments, dividing lines of transcription into co-occurring utterances across groups
639within one-second increments by row rather than full turns of simultaneous talk. Beginning at
640time zero with the final comment from the teacher in line 24 of the previous excerpt, the table
641captures 11 s of dialogue including and immediately following that utterance. Once again,
642columns are again respectively associated with the teacher and the three student groups on
643camera. Solid lines between columns demarcate fragments during which pair dialogue
644remained at the pair level—addressing a groupmate or referring to their respective points or
645shared line. Instances in which students interacted with members of different groups or the
646teacher, or referenced other groups’ points or lines, are indicated by dotted lines between
647relevant columns. Arrows drawn from each utterance indicate the group and/or event refer-
648enced or responded to by that utterance.
649As shown in the right side of Fig. 8, this brief sequence hybridized small- and whole-group
650activity, featuring overlapping orchestration and mediation moves between levels (illustrated
651by bidirectional vertical arrows) as well as mediated interactions between groups. Apart from
652Grace’s comments to her partner (times 0–2 and 6–7), all other utterances in this segment
653referenced or responded to other groups. The teacher called out four distinct reports of new
654slopes established by the groups as they appeared in the collective display (column 3, time 0;
6551–3; 7–8; 10). When one of these reports was an announcement that his group had achieved a
656slope of 20, the highest yet by any pair, Earl punched his fist in the air in celebration (column
6575, time 3). This action in turn prompted audible responses from the teacher (column 2, time 4)
658and from a member of each other group (column 3, time 4; column 4, time 5). And finally, as
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659the teacher reported large negative slopes for Group 1 and then Group 4, Earl observed that
660those slopes were among “the lowest” rather than the highest values they could achieve.
661In most cases, these instances of cross-group activity were initiated by or in response to the
662teacher, whose play-by-play updates on each group’s progress based on observations of the
663public display sparked chains of reactions from students. In this way, the collocation of each
664group’s graphing window in a single shared display mediated whole-class interactions facil-
665itated by the teacher, which in turn mediated small-group interactions within and between pairs
666as they worked to construct lines with the required characteristics. In the following segment,
667we see how mathematical objects in that shared display also mediated direct interactions
668between groups.
669Appropriating and Orchestrating Emergent Mathematical Structure.
670Table 5 continues to track Groups 1 and 4 in the moments immediately following Table 4:
671On the heels of the segment of interaction across groups immediately above, the students on
672camera briefly returned to interactions at the pair level. Group 1 opened this segment by
673discussing where Felipe should position his own point, relative to Jose’s at (0,-10), in order to
674form a line with the steepest possible slope (Group 1 column, lines 1–5). Meanwhile, in Group
6754, Ramon moved his point to a different location to replace the slope of 20 Earl had celebrated
676moments earlier with a lower value (Group 4 column, line 1). Earl objected, and Ramon
677quickly returned to his original position and restored the previous line (lines 2–5).
678Beginning in line 6, as the teacher announced that Group 1 had also formed a line with
679slope 20 (an orchestration move calling for attention at the class level), interactions within the
680two groups began to intersect (Fig. 9), as Ramon playfully called out that Group 1 had copied
681their own line. Jose and Felipe, who were seated directly in front of Earl and Ramon, both
682turned around in their seats to face the other group, and Jose clarified that both groups had
683achieved the highest possible slope (lines 6–7). Whether or not Group 4 had literally
684appropriated Group 1’s solution in these moments, as Ramon suggested, is not clear, but
685any event, these two pairs were now closely attending to one another’s graphs and how they
686were related—suggesting two-way interactions across the two groups sustained by both
687mediation and appropriation mechanisms. Indeed, Ramon relented (line 8), but then shortly
688afterward began moving his point directly under Earl’s as though seeking to confirm whether
689they could in fact form an even steeper slope by making “that [line] straight” (line 9).
690“Straight” in this exchange apparently meant vertical for both students, as Earl used the same
691word while himself placing Ramon’s point directly below his own and then pressing “mark” to
692demonstrate that the software would return y = N/A and not draw a line at all under those

Fig. 8 Orchestration graph showing transitions and overlaps between activity on Team and Class planes in
Tables 3 and 4
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693conditions (lines 10–11). Even as they acknowledged this limitation, both students moved their
694points one unit to the right and pressed mark, suddenly forming a new line y = 20X + 10 that
695appeared to extend upward continuously into Group 1’s graph of y = 20X-10 directly above
696their own in the whole-class public display (Fig. 10 and lines 12–15).
697So again showcasing the role of orchestration in multilevel activity, the teacher’s broad-
698casting of one group’s line drew attention from students in other groups, first in the form of
699Ramon’s playfully competitive jab and Jose’s quick defense (lines 6–8), then in Earl and
700Ramon’s efforts to test Jose’s assertion that “you can’t go higher” than 20 by attempting to
701form a vertical line, (lines 9–14), and then finally in Earl’s suggestion that they had formed a
702single continuous line between the two groups’ graphing windows. This appearance of
703continuity was an artifact of the display configuration, which played an equally critical role
704in mediating interactions both within and between groups. As evidenced by their distinct
705equations, the two lines had the same slope but different intercepts, and they only appeared the

Fig. 9 Orchestration graph showing transitions and overlaps between activity on Team and Class planes in
Table 5

Fig. 10 Group 4 align their points to form the appearance of continuing Group 1’s line
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706same because of the way the two groups’ windows were stacked so closely on top of one
707another in the public display. On the other hand, if one imagined either visible line segment to
708extend beyond the confines of the window provided, its appearance would match that of the
709other, so that in effect the two groups’ segments did indeed form a single line relative to either
710one group’s axes or the other’s. Perhaps unfortunately, the teacher did not overhear this
711exchange until subsequent review of the video, so the orchestration opportunity to sustain this
712interaction across groups through discussion of whether the lines were the same was missed.
713Instead, shortly afterward, Group 3 and others in the room also formed lines with slope 20, and
714the class moved on to a whole-group discussion about whether and why this was the steepest
715slope they could achieve given the constraints of a 20 × 20 graphing window and integer
716coordinates.
717In any event, this effort by Group 4 to explore connections between the graph of their own
718line and that of Group 1, in a separate graphing window, marks a novel extension of the
719mapping between social and mathematical structure in the Graphing in Groups design. In
720addition to the mapping at the group level between two collaborating students and the two
721points that uniquely determine a line, Earl and Ramon effectively leveraged the material
722properties of the public display to explore an additional, emergent layer of overlapping social
723and mathematical structure. At the level of whole-class activity, mediated by the public display
724and supported both by attention to another group’s solution (appropriation) and unexpected
725intersections across graphing windows (emergence), these students established a new mapping
726between their two interacting student groups and the matching slopes of their respective lines
727in two different graphing windows.
728Extending the mapping of social and mathematical structure from small group to whole
729class can also be accomplished through orchestration, as illustrated by another brief episode
730earlier in the same class session. As the groups completed a different task of positioning their
731points to form lines with slope 3, the teacher had used a Graphing in Groups display feature to
732suggest a similarly extended mapping. When four groups had created lines with slopes of 3,
733but a fifth group was struggling to complete the same task, the teacher switched the display so
734that the lines of all the groups (Fig. 11a) were redrawn in a single graphing window (Fig. 11b),
735prompting one student to comment that the lines were “all parallel”. With this relationship
736foregrounded, the class went on to collectively discuss what the remaining group needed to do
737in order to form a line parallel to the others and thus complete the task. In this way, the
738mathematical relationship—parallelism—between objects defined at the level of the small

Fig. 11 a and b. Merging lines from group-level windows into a shared class graph.
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739group became a resource for facilitating a teacher-led whole class discussion that then became
740a resource for scaffolding problem-solving efforts within a small group.

741Discussion

742Each of these episodes features segments in which instructional activity in the context of these
743classroom network tools shifted rapidly, and sometimes repeatedly, between small and whole-
744group levels of interaction. Importantly, the Terms & Operations and Graphing in Groups
745environments were both designed primarily with small group collaboration in mind, and the
746sessions of class activity examined in this study mainly emphasized tasks to be completed by
747student pairs. But each of these episodes showcases instances in which activity at the pair level
748was punctuated by sequences of interaction between multiple groups, or brief segments of
749teacher-led class discussion. In the first excerpt (Table 1), the teacher interrupted a groupwork
750session to showcase one group’s polynomial expression, which led to a quick succession of
751interactions between teacher and students, between students within pairs, and between multiple
752student pairs. In the second episode (Table 4), students simultaneously attended to completing
753their small-group task and to assessing the performances of classmates in other groups. Both
754segments resist classification at only the small-group level, yet neither marks a clear shift to a
755new, sustained period of activity at the whole class level.
756Dillenbourg’s orchestration graphs approach offers a useful framework for characterizing
757these episodes. The above analyses, however, suggests modifications to this approach neces-
758sary to represent multilevel activity in this classroom network environment. Indeed, applying
759orchestration graphs in the above analyses draws attention and gives shape to some distinctive
760characteristics of multilevel activity in this classroom network environment. Fig. 12a depicts a
761hypothetical sequence from the teacher’s initial setting up of the activity, to a period in which
762small groups work on the collaborative task, to a period in which the class discusses and
763compares solutions. While this diagram may be sufficient to illustrate the planned instructional
764sequence in each episode, it does not adequately capture the array of successive interactions at
765the whole-class and small group levels depicted in the episodes above. Fig. 12b proposes an

Fig. 12 a and b. Orchestration Graphs showcasing less and more frequent shifts between Team and Class levels.
c. Orchestration Graph illustrating hybrid activity spanning Team and Class planes.
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766alternative illustration of the sequences presented in these episodes, which seeks to better
767represent the intermingling of intra/inter-group and whole-class interaction on display in each
768case. This approach acknowledges that segments during which the primary activity was
769groupwork were sometimes punctuated by brief intervals of whole-class discussion, such as
770in lines 7–10 of Table 1 or lines 43–52 of Table 2.
771Other portions of these same episodes, however, are more difficult to characterize in terms of
772these rapid shifts between small-group and whole-class levels. For example, in Table 1, even as
773the teacher continued the thread of a discussion several students had participated in moments
774before, the students quickly shifted back to interactions across (lines 11–14) and within (lines 15–
77518) their groups—hence the need for overlapping segments of Team and Class activity in Fig. 6.
776Similarly, in Table 2, lines 53–56, Group 2 shifted from interaction at the class plane to the small
777group plane mid-sentence, and even as the teacher finished illustrating a point to others in the
778class. And in Table 4 and 5, teacher-facilitated whole-class interaction as well as exchanges
779within and between student pairs are all simultaneously on display even over this very brief
780segment. Fig. 12c offers a second alternative to representing the interplay between levels in these
781episodes, which generalizes the results of the orchestration graphing analyses shown in Figs. 6-9,
782in which relations between small- and whole-group activity are sometimes represented as
783simultaneous rather than sequential. In other words, some phases of classroom activity supported
784by these classroom network tools may best be characterized not simply as occurring on one plane
785or the other, but rather in terms of hybridity across multiple levels of interaction.
786These intersections between small-group and whole-class activity sometimes hinged on
787novel solution strategies and mathematical relationships that emerged from students’ and
788groups’ explorations of these virtual objects and environments. In Episode One, the unexpect-
789ed appearance of a quadratic expression during a group activity focused on linear terms
790occasioned both a class discussion and a new task for groups. And an incidental choice during
791Group 8’s problem solving emerged as an important resource for other groups. In Episode
792Two, students exploited material features of the graphical display to extend a group-level
793graphing task into an emergent exploration of relations across multiple groups’ graphs. In each
794case, dynamic mathematical objects in a shared virtual space opened up unscripted

t2:1 Table 2.
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795opportunities to consider mathematical relationships as well as fluid interactions across
796individual, small-group and whole class planes.
797These shifts between and hybridization across levels were both facilitated by orchestration
798moves on the part of the teacher. Sometimes, the teacher clearly signaled the opening of a new
799task for students to undertake at the group level, as in line 1 of Table 3, or the initiation of a
800class discussion, as in line 43 of Table 2. Other times, these orchestration moves contributed to
801the superposition of levels, as in Table 1 when the teacher alternately addressed Group 6 (lines
8021, 8, 10) and the whole class (lines 7, 8), prompting interactions both within and between
803groups as well as class-level utterances, and in Table 4 when the teacher called the attention of
804the whole class to the successive constructions of different groups.
805In each case, these orchestrations were mediated by small-group-level mathematical objects
806in the public display through the teacher’s explicit efforts to call attention to the group
807expressions in the Terms & Operations environment and the equations of the lines inGraphing
808in Groups. Likewise, students actively attended to and made comparisons across these publicly
809displayed group-level objects as they participated in both team tasks and class-wide discus-
810sions. In other words, the salience of objects that were associated with specific student groups
811appear to have contributed to the overlap of activity on the whole class and small group planes.
812Students’ and the teacher’s attention to these group-level mathematical objects sometimes
813led to instances of appropriation that supported transactions between levels of activity. In the
814first episode, one student took up a practice (attending to mathematical objects in the public
815display) introduced by the teacher in a whole-class segment, and appropriated it to initiate
816interactions both with another group and with his partner. Later, the teacher used another
817whole-class segment to introduce a strategy from one group that other groups and students
818within groups then took up, marking a quick sequence of shifts between class, group and
819individual activity. And in the second episode, one group’s accusation that another had
820appropriated their solution initiated a segment of between-group interaction in which they
821compared functions and explored constraints of the graphing window.

t3:1 Table 3.
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822Collectively, these mechanisms of emergence, orchestration, mediation and appropriation
823each contribute to the flexible reconfiguration and intermingling of levels of activity supported
824by these classroom network designs. The layering of dynamic math representations over
825multiple interactional planes creates conditions of classroom complexity in which novel and
826important mathematical artifacts sometimes emerge. Such occasions mark opportunities for
827teacher orchestrations that leverage these emergent artifacts in ways that draw more classroom
828participants into these moments of mathematical insight. Key orchestration moves appear to
829include identifying and drawing attention at the whole-group level to mathematical represen-
830tations that mediate the production of the new artifacts, and supporting processes of appro-
831priation through which individuals or small groups might make that meditational means their
832own as they likewise produce novel artifacts.
833The finding that classroom levels in these episodes were overlapping and simultaneous,
834rather than successive and distinct as instructional design might suggest, is consistent with the
835characterization of nested planes or layers of activity anticipated in Rogoff’s (1995) and
836Ludvigsen and Arnseth’s (2017) sociocultural accounts. However, prior accounts linking
837levels of activity in mathematics classrooms have typically described processes through which
838interactions among individual participants lead to the establishment of collective practices over
839relatively long timescales, typically multiple days of instruction (Cobb, 1999; Enyedy, 2005;
840Saxe, 2002). The analysis presented here suggests complementary, micro-dynamic processes
841through which levels of instructional activity can sometimes intersect, over much briefer
842intervals of classroom interaction.

t4:1 Table 4.

t5:1 Table 5.
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843In a similar vein, Stahl (2013) has suggested that regular and rapid movement between
844planes might be fundamentally characteristic of collective mathematics activity:
845

846847Uses of math resources—such as manipulating visual representations, referencing recent
848findings, expressing relationships symbolically—move fluidly between individual per-
849ceptual behavior, group problem-solving sequences and the cultural stockpile of math-
850ematical knowledge. Perhaps the incessant traversal of levels is particularly visible in
851collaborative math discourse because of its explicit use of multiple layers of reality: a
852physical drawing, the intended figure, a narrative description, a symbolic expression, the
853conceptualization, the mathematical object (p. 4).
854

855The analyses presented above suggest that this fluidity and hybridity of levels
856might be further reinforced when mathematical representations are integrated with
857infrastructures for classroom communication. Throughout each segment, the students
858repeatedly shifted attention between their own mathematical objects and those shared
859with their classmates, and between multiple representations of those objects variously
860featured in private and public displays. Likewise, the teacher continually monitored
861dynamic objects associated with each small group, drawing comparisons between them
862and using them as resources to facilitate both communication with groups and whole-
863class discussion. The multiple layers of this classroom reality—mathematical objects,
864dynamic representations, digital devices, interconnected displays—were each also
865mapped to social actors at multiple scales of collective participation. The resulting
866dialectics of multiple mathematical and social structures point to novel and emerging
867opportunities for classroom interaction and learning activity, characterized by hybrid
868and dynamic rather than discrete planes of activity and pedagogical modes.
869While layered and dynamic mathematical representations, and CSCL systems with
870intentionally designed small- and whole group elements like the one described in this
871paper, might make this hybridity particularly salient, the boundaries between levels of
872activity in real collaborative classroom settings may always be blurrier than instruc-
873tional design anticipates. Indeed, this observation evokes Lave & Wenger’s (1991)
874distinction between a teaching curriculum, devised with specific instructional intent,
875and a learning curriculum comprising “a field of learning resources in everyday
876practice viewed from the perspective of learners” (p. 96, emphasis in original). From
877this latter perspective, which takes learning environments to be “situated opportuni-
878ties…for the improvisational development of new practice” (p. 96), the orchestration
879moves of teachers and the mediating role of designed artifacts will always be
880complemented (and often disrupted, reframed or transformed) by the appropriation
881moves of learners and the emergent dynamics of complex classroom systems. Indeed,
882from the standpoint of learners, levels of classroom activity may resemble other
883institutional norms and practices that students must navigate even as they engage in
884conceptual sensemaking (Furberg et al., 2013). Along these lines, Damsa and Jornet
885(2016) have argued that when viewed from a learner’s perspective, seemingly distinct
886levels and contexts of learning activity in fact form continuous ecology. Indeed,
887particularly in the increasingly digital modern classroom, levels of learning activity
888might be best understood in ecological terms—not as bounded instructional segments,
889but as overlapping layers of activity in a complex and shifting landscape of contem-
890porary learning environments (Säljö, 2010).
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891Conclusion

892This paper offers both theoretical and methodological resources for examining the ways CSCL
893systems intersect with different modes of instruction and levels of activity in a classroom
894ecosystem. Classrooms routinely find learners engaged in individual, small- and whole-group
895forms of interaction. While sociocultural theory provides a broad framework for conceptual-
896izing interrelations among these different scales of activity, the particular mechanisms through
897which these levels might intersect in the real-time flow of classroom instruction, and in the
898context of digital tools for mathematical representation and peer communication, need further
899elaboration.
900The episodes examined above offer a view of the ways classroom CSCL tools can equip
901both students and teachers with an array of conceptual and interactional resources for shared
902mathematical work. They also show that students’ construction of shared mathematical objects
903and the teacher’s attention to those group-level objects as they appeared in the collective
904display led to novel solutions and dynamic resources for blending small group work and
905whole-class discussion. The results presented in this paper demonstrate the utility of an
906analytic framework that integrates the mechanisms of appropriation, mediation, emergence
907and orchestration in the examination of classroom activity across multiple levels.
908Of course, the affordances of these CSCL tools for supporting multiple and potentially
909overlapping levels of classroom activity also face teachers with new choices regarding when,
910whether and how to attend to, transition between, or merge these levels. Just as students’
911personal devices in classrooms simultaneously represent the potential risk of distraction and
912reward of novel forms of interaction, designs for device networks like the ones presented in
913this paper pose both opportunities and challenges for orchestration amid growing classroom
914complexity. This study offers an initial exploration of the possibilities and mechanisms for
915supporting learning activity with these tools; the different ways other teachers might take up
916these learning environment designs and manage the real-time flow of information and the
917orchestration resources they provide would be an important area for further investigation.
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